overlaps the one farther the stem apex (or would if they were close enough).
Tooth Small, tapering projection on margin of leaf or thallus, consisting of one or a few cells, or formed by an extension of a cell wall.

Transverse Having the join between the leaves and stem running sideways across the stem, not angled.

Trigone Triangular to cordate thickening at the point where three cells join.
Underleaves Leaves of a different size (usually much smaller) and shape than the lateral leaves, and attached on the ventral side of the stem.

Ventral On the underside of the thallus or shoot, i.e. closest to the substratum.
transverse leaves

Studies on Victorian bryophytes 6. Key to thallose liverworts and hornworts

David Meagher
School of Botany, The University of Melbourne, Victoria 3010

Abstract

A new key to the genera and many species of thallose liverworts and hornworts (except Fossombronia and Riccio species) in Victoria is provided. (The Victorian Naturalist 123 (4), 2006, 247-254)

Introduction

This artificial key complements the key to the genera of leafy liverworts in this volume. It is based on the key to southern Australian liverworts in Scott (1985), but is substantially updated and revised to take into account taxonomic changes and additions to the Victorian flora in the last 20 years. Common mistakes are allowed for in the main key and group keys.
The key can be used to identify specimons to species level, except for species of Fossombronia (which are very difficult to identify without detailed analysis) and Riccio (which is under review in Australia and is likely to undergo substantial changes). Also keep in mind that species and genera presently known only from

Tasmania, New Zealand or other parts of the world might still be found in Victoria. This key is not valid for other regions of Australia.
Most of the thallose liverworts and hornwort in Victoria are described and illusrated in Scott (1985) and Mcagher and Fuhrer (2003).
Names of taxa follow the current national checklist (McCarthy 2006).
A basic glossary of terms used in this key is included in the key to leafy liverworts (Studies 5 in this issue). For a complete and beautifully illustrated glossary of bryoological terms, see Malcolm and Malcolm (2000).

Bryophyte special issue

Key to thallose liverworts and hornworts
1 Thallus leafy, or with leaf-like lobes on either side of a central axis 2
Thallus lobed or unlobed. but not leafy 5
2 Rhizoids crimson Fossombroniaceae (Group A)
Rhizoids not crimson, or absent, or not seen. 3
3 Lobes pinnate or alternate, arranged all along the central thallus; or plant leafy or Icttuce-like 4
Lobes palmate, the lobes radiating or bifureating (Y -branching) from a central point; or thailus arising from a narrow, \pm upright stalk 11
4 Thallus bright grass-green, thick and lleshy, rather brittle: rare plant Treubiaceac (Trenhia fasmanica)
Thallus green or not; not thick and flesshy, not brittle; common plants Fossombroniaceae (Group A)
5 Thallus one cell thick (except midrib) 6
Thallus mostly several cells thick in part 8
6 Thallus narrow throughout ($<3 \mathrm{~mm}$), lobes pinnate, altemate or bifurcated 7
Thallus wide, at least in part (usually $>4 \mathrm{~mm}$), often palmately divided Pallavicinaceac (Group C)
7 Growing on wet or dried soil commonly mud (either saline or fresh); lobe pattern usually not obvious Sphaerocarpales (Group D)
Growing on trees or rocks, never on mud; lobes bifureating (Y -branching) Metzgeriaceae (Group E)
8 Chloroplasts usually I or 2 per cell; capsule erect, needle-like, splitting gradually down from tip; large eavities containing dark cyanobacteria often evident in thallus Anthocerophyta (Group B)
Chloroplasts several to many per cell; capsule ovoid to globose, not needle-like; cavities in thallus (if present) not containing dark cyanobacteria. 9
9 Thallus half-buried in soil, tirmly anchored by copious rhizoids: capsule formed in marsupium buried in soil Enignella thallina
Thallus on or above soil, or not on soil, anchored or not by rhizoids: capsule not formed in marsupium buried in soil 10
10 Thallus surface without pores. upper surface homogeneous, without pores; rhizoids all smooth 11
Plants surface with pores, often opeaing to the upper surface by air pores; rhizoids nomally of two sorts: one snooth and the other with internal peg-like thickenings 15
11 Midrib conspicuous; lamina 1 cell thick in outcr parts 12
No midrib; lamina never I cell thick, except sometimes at the very edge 1312 Plants on bark or rock, never on soil; pale yellow-green, never rose-tinted;prostrate: finc hairs present on ventral surface and usually also onthallus marginsMetzgeriaceae (Group E)
Plants on soil or roting logs, also epiphytic in humid habitats:mid to dark green, often rose-tinted, often arising from a narrow,\pm upright stalk; ventral surface and margins lacking hairs(but may be toothed)Hymenophytaceae / Pallavicinaceae (Group C)
13 Plants with regular, few-celled lobes in the position of leaves and underleaves miskeyed Zoopsis or eroded leafy liverwort Plants usually irregularly lobed; lobes many-celled 14
14 Sporophyte needle-likc; chloroplasts usually 1 or 2 per ccll: cavities in thallus containing dark cyanobacteria often present ... Anthocerophyta (Group B)
Sporophyte not needle-like; chloroplasts usually several to many per cell; cavities in thallus containing dark cyanobacteria never present Aneuraceac (Group F)
15 Gemma cups circular or crescent-shaped, obvious on upper surface of thallus Marchantiaceae (Group G)
Gemma cups lacking 16
16 Upper surface of thallus spongy, often whitish 17
Upper surface of thallus firm, usually green 18
17 Plants usually forming complete or partial rosettes on the ground. or else free-floating; not in salt pans Ricciaceae (Group H)Plants not forming rosettes; in salt pans or oncompacted soil
\qquadSphaerocarpales (Group D)
18 Upper surfacc of thallus flat, not furrowed: sporophytes carried outside the thallus 19
Upper surface furrowed, V-shaped at least at apex; sporophytes embedded in thallus Ricciaceae (Group H)
19 Thallus usually > 7 mm wide: many long, free rhizoids on ventral surlace Marchantiaceae (Group G)
Thallus usually $<6 \mathrm{~mm}$ widc: never with rhizoids as above Aytoniaceae and Targioniaceae (Group I)
Group A
Fossombroniaceae
1 Plants aquatic or semi-aquatic; thallus erect, up to 30 mm tall Anstrofossombronia anstralisPlants not aquatic or scmiaquatic (but may be on drying mud);thallus prostrate, $<10 \mathrm{~mm}$ tall2
2 Rhizoids hyaline or brown, never crimson; Thallus \pm as long as wide, ruffled and lamellate on dorsal surface Petalophylltum preissii Rhizoids usually crimson; thallus usually much longer than wide, not lamellate Fossombronia
Group B
Anthocerophyta
1 Chloroplasts 2 or more per cell; capsule with spirally thickened and unscgmented claters 2
Chloroplasts usually 1 per cell; capsule with irregular segmented pseudo-elaters 3
2 Thallus <25 mm long Megoceros gracilis
Thallus 35-50 mm long Megaceros pellucidus
3 Thallus with a rough and cavernous surface, usually pale green with crisped margins; spores blackish Anthoceros pumctatns Thallus with smooth upper surface, usually dark green with margins rarcly crisped; spores yellowish 4
4 Plants dioecious Phaeoceros laevis
Plants monoecious Anthoceros brotheri
Group C
Hymenophytaceae and Pallavieinaceae
1 Plants with sex organs 2
Sex organs lacking or not visible 8
2 Sex organs on specialised short branches at base or on underside of frond 3
Sex organs on upper side of frond, not on specialised branches 4
3 Sexual branches at base of frond; thallus simple or sparsely branclied, not palmate Podomitrium phy/hanthus. Sexual branches on underside of frond; thallus palmately divided above Hywenoplyton flabellatmu
4 Sporophyte base encased in a thick. fleshy tube bearing archegonia near apex; male plants with scales overlapping midrib dorsally 5
Sporophyte base surrounded by a long tubular pseudoperianth, not fleshy; male plants with scales in 2 rows down each side of midrib 6
5 Thallus branched. margins coarsely toothed Syuphyogyua podophyila
Thallus unbranched, consisting of broad and narrow sections, margins entire Symphyogyna interrupta
6 Margins strongly toothed with conspicuous teeth, several cells long Pallavicinia siphoides
Margins generally entirc or with teeth of only 1 or 2 cells 7
7 Thallus \pm flat, the margins rarely if ever flexed upwards*

\qquad Pallavicinia lyelli Thallus commonly concave, the margins flexed upwards Pallavicinia rubristija
8 Frond margins toothed, at least ncar apex 9
Frond margins entire or nearly so 10
9 Margins with teeth of only 1 or 2 cells** Pallavicinia lyelli
Margins with teeth several cells long P. lyelli / S. interrupta (inseparable)
10 Thallus, commonly concave, the margins flexed upwards Pallavicinia rubristija Thallus \pm flat, the margins rarely if ever flexed upwards 11
11 Fronds borne on ercet stalks: plant completely green I!ytenopl!̣ton flabellatunt Fronds prostrate; plant may have a rose-pink tinge 12
12 Stalk rose-pink, at least near base Pallavicinia lyelli Stalk completely green Podonvitrimu plyyllanthus

[^0]
Group D Sphaerocarpales

1 Thallus \pm circular, usually almost covered by inflated, bottle-like involucres 2
Thallus elongated, consisting of a stem with a wing along one side,
spore-bearing involucres at the edge and tip .. 3
2 Thallus bubble-like, with a single pore on top;
in saline habitats ... Monocarpus sphaerocarpus
Thallus flat, with several involucres together;
not in saline habitats ... Sphaerocarpos texanus
3 Monoicous; on freshwater mud; spines on spores $12 \mu \mathrm{~m}$ long Riella spiculata
Dioicous; on saline mud; spines on spores $4-5 \mu \mathrm{~m}$ long Riella halophila

Group E
Metzgeriaceae
1 Thallus with hairs on both dorsal and ventral surfaces* Metzgeria sp. A
2 Thallus lobed and saccate ... Metzgeria saccata
Thallus flat, not lobed or saccate .. 3
3 Hairs weakly to distinctly falcate, mostly paired; midrib covered by 2-3 cells on dorsal side

Metzgeria leptoneura
Hairs not falcate, paired and/or single; midrib covered by 2-4 cells on dorsal side ... 4
4 Thallus tapered to a narrow apex on most lobes Metzgeria consanguineat $\begin{aligned} & \text { Thallus rarely if at all tapered, most lobes with an obtuse, rounded apex } 5\end{aligned}$
5 Midrib covered by 3(-4) cells on dorsal side, 4-6 on ventral side..... Metzgeria rigida
Midrib covered by $2(-3)$ cells on dorsal side, $2-4$ on ventral side
6
6 Midrib covered by 2 cells on ventral side** \qquad Metzgeria decipiens
Midrib covered by ($3-$) 4 cells on ventral side
Metzgeria furcata

Notes:
Cells covering the costa should be counted about half way between one thallus branch and the next.

* Metzgeria sp. A from Carlisle State Park seems closest to M. follicola of Melanesia.
** So (2002) followed Grolle (2002) in reducing M. decipiens to a synonym of M. furcata, based on the variability in the number of cells covering the midrib on the dorsal side of the thallus. However, the number of cells on the ventral side seems to distinguish the two clearly. Until a full assessment of the two taxa is made, I prefer to maintain them as separate entities.
Group F
Aneuraceae
1 Thallus U-shaped in cross-section, at least near lobe tips 2
Thallus flat or slightly curved in cross-section, never U-shaped 4
2 Thallus margins plane: lobe apices spoon-shaped, often yellowish and bearing gemmac Riccardia cochleata
Thallus lobes flexuose to crispate; lobe apices not as above 3
3 Thallus > 7 mm wide; margins strongly crisped: aquatic plant of alpinc or subalpine strcams Ancura sp. A
Thallus $<6 \mathrm{~mm}$ wide; margins flexuose to slightly crisped; not aquatic Athenra rodwayi
4 Apex of thallus not dissected 5
Apex of thallus dissected 8
5 Plant dendroid or semi-dendroid; thallus differentiated into a central stem and branches; lateral branches with evident central strands: cuticle papillose Riccardia eviocanla
Thallus without an erect stem; lateral branches without a central strand; cuticle smooth 6
6 Thallus branches with a wing I cell thick; mucilage papillae lateral and ventral only, persisting; shoot calyptra smooth Riccardia miniua Thallus branches not winged; mucilage papillae dorsal as well as lateral and ventral, not persisting; shoot calyptra crowned with hyaline hairs 7
7 Thallus lens-shaped in cross-section Riccardia aeqnicellalaris
Thallus circular in cross-section Riccardia alcicornis
8 Cuticle striolate or papillose 9
Cuticle smooth 10
9 Cuticle striolate Riccardia crassa Cuticle papillose Riccardia colensoi
10 Thallus mean width $>2 \mathrm{~mm}$ (usually $3-6 \mathrm{~mm}$): apex deeply dissected Aucura alterniloba
Thallus mean width < 2 mm ; apex shallowly divided 11
11 Thallus mean width < 1 mm ; often with prostrate main branches and erect, pinnately branched (almost palmate) secondary branches; monoceious Riccardia wattsiana
Thallus mean width > 1 mm ; branches prostrate; dioccious 12
12 Branching often appearing palmate; mucilage papillae not persisting: stolons present Riccardia rupicola
Branching always clearly pinnate; mucilage papillae persisting; stolons absent Riccarlia bipinuatifida
Note:
Aneura sp. A is an undescribed species known from the Bogong High Plains, Baw Baw Plateau and Kosciuszko National Park. It is probably also present in New Zealand.
Group G
Marchantiaceae
1 Gemma cups (if present) crescent-shaped; porcs on upper surface of thallus not surrounded by polygonal shapes Lunularia cruciata
Gcmma cups (if present) circular; pores on upper surface surrounded by polygonal shapes 2
2 Ventral scales forming a narrow crimson stripe down the centre of the underside of the thallus; archegoniophore lobes flat, rectangular Marchantia foliacea
Ventral scales colourless, covering underside of thallus; archegoniophore lobes rod-like 3
3 Colour of upper surface of thallus evenly green: surface with a glossy sheen; marginal scales not projecting beyond thallus edge Marclautia berteroana
Colour of upper surface of thallus uneven, with a dark zonedown the middle; surface without a glossy sheen; marginal scalesprojecting slightly beyond thallus edge Marchautia polymorpha var. aquatica
Group H
Ricciaceae
1 Plants free-floating 2
Plants on soil or mud 3
2 Ventral scales conspicuous, purplish Ricciocarpos natans Ventral scales not evident, not coloured Riccia duplex var. duplex
3 Thallus heart-shaped; on drying mud; ventral scales purplish, in bunches Ricciocarpos natans
Thallus heart-shaped or not; on various substrates; ventral scales variously coloured but not in bunches 4
4 Dorsal surface of thallus with compact tissues forming narrow vertical air chambers, without specialised pores; epidermal cells hyaline Riccia subgenus Riccia
Dorsal surface of thallus with loosely arranged (often spongy)tissues forming polyhedral or large and irregular air chamberswith well-defined pores; epidermal cells chlorophylloseexcept around poresRiccia subgenus Ricciella

Group I
 Aytoniaceae and Targioniaceae

1 Side branches originating from underside ol thallus; capsules formed in black spherical pouches beneath apices of thallus \qquad Targionia loypophylla
Side branches originating from margin or upper surface of thallus; capsules formed in umbrella-like strcutures (archegoniophores) ... (Aytoniaecae) 2
2 Sex organs always present, in 2 or more receptacles down the midline of the thallus

Plagiochasma rapestre
Scx organs absent, or scattered receptacles usually on the margin or apex of the thallus 3
3 Epidermal pores surrounded by 4 or more rings of cells; perianth (involtucre) hemispherical, with one slit beneath

Reboulia queenslandica
Epidermal porcs surrounded by $1-3$ rings of cells; perianth conical, opening with numerous vertical slits

Asterella 4
4 Thallus crimson underneath, gencrally $5-7 \mathrm{~mm}$ wide: perianth with 12-14 slits*

Asterella drıumuondii

> Thallus green underncath, generally $3-4 \mathrm{~mm}$ wide: pcrianth with about 8 slits ... Asterella tenera
*Asterella conocephala, A. tasmanica and A. whiteleggeana are almost certainly conspecific with A. drummondii or A. tenera.

Acknowledgements

Many thanks are due to two anonymous referees who pointed out errors in the manuseript and made some valuable comments and suggestions.

References

Grolle R (2002) Typificalions of three old names of Mezzgeria specics (Hepaticac): humgermannia fircata L. 1753. J. linearis Sw: 1788 and J. mithesecens Schrank 1792. Cryprogamic Byologle 23: 119-121.
Malcolm B and Malcolm. N (2000) Mosses and Chher Bryophtes: An Illustrated Ghasarys: (Miern-Optics Press: Nelsan. N7.
MeCarthy PM (2006) Checklist of Anstrulion tiverworts and Hemmorrs. Version 6 April 20106 (www.anby.gov.au/abrs). (ABRS: Canberra)
Meagher D and Fultrer B (2003) A Field Guide to the Mosses and Allied Plams of Somhern Australia.

Flora of Australia Supplomentiry Series No. 20. (ABRS and FNCV: Canberra and Blackburn)
Schuster RM (1991) Dagnoses of new taxa of Hepalicae. I. Jungermannidac. Journal of the Hattori Botanical Lahoratory 70: 143150.
Scoul GAM (1985) Souhterm Australian Livernorts: Australian Flora and Fana Series No, 2. (AGiPS: (anberra)
Schaumanin 1-, Pleitier I and Frey W (2004) Molecular disergence patterns within the Gondwaman liverwort genus. Kensenicr (Pallavicmiacse, Hepaticoplyylina, Bryophyla). Studies in Austra! lemperate rain lorest bryophytes 25. Jommal of the Hattori Botanical Lubatator 96: 231244.
So ML (2002). Metzgeria (Hepaticac) in Australasia and the Pacific, New Zealand Sournal of Botam 40: 603-627.

Reccived 1.3 April 2006: accepted I June 2006

One hundred and nineteen years ago MOSSES OF VICTORIA, WITH BRIEF NOTES BY D. SULLIVAN

'Where to look for them. - On and in the crevices of rocks, on logs, ahout the bases and roots of trees, on banks of watercourses, lakes, lagoons, and waterhotes, on the ground. from the low lands to the summits of our highest mountains - both in wet and dry localities, but more especially in the former. ... I woukl recommend Melbourne collectors to search well about the Yarra, Dandenong, You Y'angs, Mount Macedon. Riddle's Creek, Lancefield (Deep Creek), Sumbury, Gisborne, ect. September, Oetober, and Nowember are the best months lor the dry localities, and December, January, and February for the higher mountains and moist forest country. Mosses may he found in certain localities throughout the year. but in winter. except in rare cases, they are not in a lit state for detailed examination, having lost both the calyptras and operculums parts, which are sometimes of great value in deciding specitic distinctions.

From The Victorian Naturalist IV (1887-8), pp. 109-110

[^0]: * Schuster (1991) gave the name Pallavicinia pseudolyellii to Australasian material of ${ }^{-P}$. lyellii' and gave a Latin diagnosis, but did not validate the name by nominating a type.
 ** Jensenia conmivens, discounted from the Australian flora by Schaumann et al. (2004). would key to couplet 9 ; it has fronds bome on erect stalks but is tinged rose red below.

